Reconstruction of Arm Movement Directions from Human Motor Cortex Using fMRI
نویسندگان
چکیده
Recent advances in functional magnetic resonance imaging (fMRI) have been used to reconstruct cognitive states based on brain activity evoked by sensory or cognitive stimuli. To date, such decoding paradigms were mostly used for visual modalities. On the other hand, reconstructing functional brain activity in motor areas was primarily achieved through more invasive electrophysiological techniques. Here, we investigated whether non-invasive fMRI responses from human motor cortex can also be used to predict individual arm movements. To this end, we conducted fMRI studies in which participants moved their arm from a center position to one of eight target directions. Our results suggest that arm movement directions can be distinguished from the multivoxel patterns of fMRI responses in motor cortex. Furthermore, compared to multivoxel pattern analysis, encoding models were able to also reconstruct unknown movement directions from the predicted brain activity. We conclude for our study that non-invasive fMRI signal can be utilized to predict directional motor movements in human motor cortex.
منابع مشابه
Direction of Movement Is Encoded in the Human Primary Motor Cortex
The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1). Using functional magnetic resonance imaging (fMRI) and a manual step-tracking task we found that activation patterns related to movemen...
متن کاملMotor area localization using fMRI-constrained cortical current density reconstruction of movement-related cortical potentials, a comparison with fMRI and TMS mapping.
The localization of human hand primary motor area (M1) has been the object of several studies during the last decades. EEG source analysis, functional magnetic resonance imaging (fMRI) and focal transcranial magnetic stimulation (TMS) are non-invasive methods for localizing M1 with good accuracy compared to direct electrocorticography (ECoG) results. EEG sources were reconstructed with Cortical...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملModulation of cortical activity in patients suffering from upper arm spasticity following stroke and treated with botulinum toxin A: an fMRI study.
BACKGROUND AND PURPOSE Botulinum toxin (BTX) treatment can relieve focal arm spasticity after stroke, presumably through dynamic changes at multiple levels of the motor system, including the cerebral cortex. However, the neuroanatomical correlate of BTX spasticity relief is not known and should be reflected in changes of cortical activation during motor tasks assessed using repeated functional ...
متن کاملDifferentiating intended sensory outcome from underlying motor actions in the human brain.
To achieve a certain sensory outcome, multiple actions can be executed. For example, unlocking a door might require clockwise or counterclockwise key turns depending on regional norms. Using fMRI in healthy human subjects, we examined the neural networks that dissociate intended sensory outcome from underlying motor actions. Subjects controlled a figure on a computer screen by performing pen tr...
متن کامل